
Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 49

SADIO Electronic Journal of Informatics and

Operations Research
http://www.dc.uba.ar/sadio/ejs

vol. 9, no. 1, pp. 49-66 (2010)

Model transformation as a mechanism for the implementation of

domain specific transformation languages

Jerónimo Irazábal1,2

Claudia Pons1,2,3 Carlos Neil3

1 LIFIA
Facultad de Informática, Universidad Nacional de La Plata
Calle 50 esq.120. La Plata. Buenos Aires. Argentina
Emails: [jirazabal,cpons]@lifia.info.unlp.edu.ar

2 CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas.
Buenos Aires, Argentina.

3 Universidad Abierta Interamericana (UAI)
Av. Montes de Oca 745 - (C1270AAH) Ciudad de Buenos Aires. Argentina
Email: carlos.neil@vaneduc.edu.ar

Abstract

Model Driven Engineering proposes a software development process in which the key notions
are models and model transformations. There are already several proposals for model
transformation specification, implementation, and execution. In this paper we introduce the
notion of domain specific transformation language (DSTL). A DSTL is a transformation
language tailored for a specific domain; in contrast to well known transformation languages,
such as QVT or ATL, the DSTL's syntax and semantics are directly related to a specific
domain and/or kind of transformation. A DSTL makes transformations easer to write and
understand, the code is intuitive and the users do not need to know a generic transformation
language. Also we analyze a novel way to define its semantics. Our proposal consists in using
transformation languages themselves to the implementation of such domain specific
languages. We illustrate the proposal through an example in the database domain.

Keywords: model driven engineering, model transformation language, domain specific language, semantics,
ATL

1 Introduction

Modeling is significant for dealing with the complexity of computer systems during their development and
maintenance processes. Models allow engineers to precisely capture relevant aspects of a system from a given

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 50

perspective and at an appropriate level of abstraction. Then, model transformations provide a chain that
enables the automated development of a system from its corresponding models. Model Driven Engineering
(MDE) [Kleppe et al., 2003; Stahl and Völter, 2006; Pons et al., 2010] proposes a software development
process in which the key notions are models and model transformations.

Models can be expressed using different languages. Unlike general-purpose modeling languages (GPMLs),
such us the UML, Domain-specific modeling languages (DSMLs), such as the RDBMS language, can
simplify the development of complex software systems by providing domain-specific abstractions for
modeling the system in a precise but simple and concise way. DSMLs have a simpler syntax (i.e., few
constructs focused to the particular domain) but its semantics is much more complex (because all the
semantics of the particular domain is embedded into the language).

In this process, software is built by constructing one or more models, and successively transforming these into
other models, until finally the output consists of program code that can be executed. A model transformation
is a set of transformation rules that together describe how a model written in the source language is mapped to
a model written in the target language. Model transformations are specified using a model transformation
language. There are already several proposals for model transformation specification, implementation, and
execution, which are beginning to be used by Model-Driven Engineering practitioners [Czarnecki and Helsen,
2006]. The term “model transformation language” comprises all sorts of artificial languages used in model
transformation development including general-purpose programming languages, domain-specific languages
(DSLs) [Mernik et al., 2005], modeling and meta-modeling languages and ontologies. Examples include
languages such as the standard QVT (Query/View/Transformation) [OMG/QVT, 2005], ATL (ATLAS
Transformation Language) [ATLAS team, 2006; Jouault and Kurtev, 2006] and RubyTL [Sánchez Cuadrado
et al., 2006].

These languages are specific for defining model transformations but they are independent of any modeling
domain; so they contain complex constructs referring to pattern matching mechanisms, control structures, etc.
This can eventually compromise the primary aims against which the DSML was built: domain focus and
conciseness. Therefore, an extra level of specialization can be realized on them. This means, we can define a
transformation language specifically addressed to a given transformation domain, i.e., a Domain Specific
Transformation Language (DSTL). For example, we can create a language focused on either the definition of
transformations between database models or the definition of transformations between business models,
among others.

In this context if we would like to take advantage of a very specific transformation language we face the
problem of implementing such a new language. There exists powerful frameworks for the definition of
domain specific languages, such as Eclipse [ISIS-GME, 2008; Gronback, 2009], Microsoft DSL Tools
[Greenfield et al., 2004; Cook et al., 2007] and AMMA [Bézivin et al., 2006]. These frameworks are mainly
focused on the definition of the syntax (both abstract and concrete) of the DSL, while less attention is devoted
to the semantics of the language. In general the semantics is indirectly defined by the code generation
mechanisms that allow us to specify which the code associated to each modeling artifact is. Nevertheless, the
AMMA framework is an exception, since it takes advantage of the MDE ideas. Within the AMMA
framework the semantics of a DSL can be defined in a more abstract manner either in terms of Abstract State
Machines (ASMs) or based in another language. In [Jouault et al., 2006], is described the application of the
AMMA framework to the implementation of the languages SPL and CPL for the telephony domain.

In the present work we introduce the proposal of defining domain specific transformation languages (DSTLs)
and also we analyze a novel way to define their semantics. Our proposal consists in using transformation
languages themselves to the implementation of such DSTLs.

This paper is organized as follows. Section 2 presents the main features of the proposal to define domain
specific languages using transformation languages. Section 3 illustrates the use of the approach by the
definition of a DSTL for the transformation of extended relational models. Section 4 shows relevant parts of
the ATL-based implementation of such DSTL. Section 5 discusses an alternative implementation approach.
Section 6 compares this approach with related research and finally Section 7 presents the conclusions.

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 51

2 DSL implementation schema

The AMMA framework [Bézivin et al., 2006] allows us to define the concrete syntax, abstract syntax, and
semantics of DSLs. In [Jouault et al., 2006; Barbero et al., 2007; Di Ruscio et al., 2009] the reader can
analyze a number of scenarios where the AMMA framework has been used to define the semantics of DSLs
in terms of other languages or in terms of Abstract State Machines (ASMs).

Our proposal has similar goals to the AMMA framework, but we present a novel alternative, where the
language semantics is achieved by means of a transformation written in the ATL language. Our schema can
be seen as the interpretation of the DSL into the ATL transformation language. Our implementation approach
consists in the generation of a transformation T (written in ATL) that takes two inputs: an instance of the DSL
metamodel (T1), that is, a domain specific transformation written in the domain specific language (such as a
transformation between databases) and a model (M1) belonging to the specific domain (e.g., a concrete user
database model). The output of such transformation T is the model that is expected to be produced by the
application of the domain specific transformation on the input model (M2). Figure 1 shows the
transformation scenario.

Figure 1. Transformation scenario.

In our implementation we directly deal with the abstract syntax of the DSL, which implies an important
simplification. Nevertheless, this simplification can be easily relaxed in order to also consider concrete
syntaxes: for example by using the TCS (Textual Concrete Syntax) language, which is provided by the
AMMA framework to this particular purpose.

3 A domain specific transformation language for transforming relational models

In this section we first present the simplified version of the relational model that we will use; then we define a
language that allows us to transform relational database models in a wide spectrum. Such language deals with
the data model, as well as with the scripts and the existing data that populate the base. Finally, we illustrate
the effectiveness of the language through its application to the transformation of a simple database model.

Notice that we do not intent to make a contribution to the field of database transformations. There are many
approaches for refactoring already defined – see for example: http://databaserefactoring.com/. We have
selected this domain due to its simplicity to show the applicability and advantages of DSTLs.

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 52

3.1 The relational model

Due to the fact that the transformation language is expected to express the transformation of the whole
spectrum of a database model (i.e., the data model, the scripts and the concrete user’s data), the source
language of the transformation should be able to represent all those elements. Consequently the metamodel
that we define in this work is richer than the classical relational metamodel described in [OMG/QVT, 2005],
which is particularly restricted to the M1 level of the OMG’s 4-levels metamodeling architecture
[OMG/MOF, 2003]. Therefore, our metamodel contains additional meta-classes to represent both scripts and
data values as well. Figure 2 shows the modified relational metamodel.

Figure 2. Simplified relational metamodel including scripts and data values

For the sake of clarity, a number of simplifications have been applied to this meta-model; the most relevant
ones are: unique data type (string of chars), simple key and single script semantics per interpretation. All these
simplifications can be removed without major changes in the proposal.

3.2 A DSTL fitting the relational model

We define a simple domain specific transformation language (DSTL), with the aim of transforming relational
databases. This language will express the transformation of the three elements we mentioned before: the data
model, the scripts and the data values. This specific language allows us to denote the most usual kinds of
transformations in the databases domain. As an example we include here the description of only three
transformations: changeName, extractCommonData and factorize. The abstract syntax of the DSTL is as
follows:

<transformation> ::=

 changeName <table> <string> |

 extractCommonData <table> <element> <table> |

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 53

 factorize <table> <element> <table> <element>* |

 <transformation>;<transformation>

<table> ::= table <string>

<element> ::= column <string> | foreignKey <string>

<string> ::= a | b | c | … | <string> <string>

Due to the fact that we will use model transformations to implement this DSTL, we need to have the DSTL’s
abstract syntax defined by a metamodel. Figure 3 displays the metamodel of our relational DSTL.

After defining the syntax of our language we need to define its semantics. As an initial step, we describe the
semantics using just natural language by means of definitions that transmit an intuitive understanding of the
meaning of each syntactic construct. However, much formality is required in order to guarantee the correct
implementation of the DSTL. Such formal definition of the semantics will be addressed in the following
sections.

Figure 3. Metamodel of the domain specific transformation language

• changeName:

This is a very simple transformation, in which its effect consists of changing the name of the input
table.

Next transformations are considerably more complex and they will receive a more exhaustive treatment:

• extractCommonData:

This transformation specifies the splitting of a table into two tables with the goal of avoiding data
duplication. The source of this transformation is a table and a selected column (containing duplicated
data). The transformation creates a fresh table. Existing data is collected from the input table and
then it is stored in the fresh table in a grouped way (avoiding the duplication of data). In parallel the
references contained into the scripts are consistently modified so that the behavior of the scripts
keeps unaltered. Figure 4 illustrates the effect of this transformation at model level.

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 54

Figure 4. Effect of the extractCommonData transformation.

In order to make the behavior of this transformation more comprehensible, we describe it from an
operational point of view: any algorithm performing this transformation should carry out, in some
concrete way, the following steps.

1) To create the target table (in the case the table does not exist);

2) To replace the selected column in the source table by a foreign key to the target table;

3) To replace the direct references to the selected column by an indirect reference to the column in
the target table;

4) To move the data from the column of the source table to the target table, avoiding data
duplication;

5) To modify the data stored in the source table, establishing the value of the added foreign key
(step 2) as the value of the primary key of the target table, corresponding to the value of each
moved data (step 4).

• Factorize:

In a similar way to the previous transformation, the factorize transformation states the splitting of a
table into two tables with the goal of avoiding data duplication. The main difference with respect to
the extractCommonData transformation consists in that this last transformation generates a target
table with references to the source table. Direct references to removed elements of the source table
will be transformed to direct reference to the corresponding element in the target table. The data from
the source table will are transformed in order to keep only one value for each different value in the
grouping column. Such column will become the new primary key of the source table (previous
primary key is removed).

As expected, the evaluation of any transformed script on the target database will present no
observable difference with respect to the evaluation of the corresponding source script on the source
database. The effect of the transformation on the data model is illustrated in Figure 5. In terms of an
algorithm, we have the following steps:

1) To create the target table (in the case the table does not exist);

2) To remove the elements in the source table;

3) To remove the primary key from the source table and to set up the grouping column as the new
primary key;

4) To replace direct references to removed elements with a direct reference to the corresponding
element in the target table;

5) To keep only one value for each different value of the new primary key (duplicated data is
removed).

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 55

6) To move the existing data from the source table to the new table, replacing the value of the
external references to the source table by the value of the grouping column in the source table.

Figure 5. Effect of the factorize transformation.

As it is expected, the evaluation of any transformed script on the transformed database will present no
observable difference with respect to the evaluation of the corresponding source script on the source database.

3.3 Example

In this section we show the applicability of the domain specific transformation language. To this purpose we
present a very simple example consisting of a minimal database containing a single table named “Book”. This
table has seven columns: ISBN, title, editorial, comments, availability, chapterTitle and chapterPages.

By using our DSTL we will transform this database to a behavioral equivalent database without data
duplication. In order to specify such transformation we make use of a concrete syntax based on XML and
directly supported by the AMMA framework, as follows:

Figure 6 displays the source model (to the left hand side) and the target model – i.e., the result of the
transformation (to the right hand side).

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 56

Figure 6. The data model before and after the transformation application.

After applying the first transformation, the editorial information is not longer a column in the “Book” table.
The editorial information becomes a new entity in the target database, i.e. the “Editorial” table. The second
transformation prevents us from having the general information of the book duplicated for each chapter. After
performing the transformation, the book general information becomes separated from the chapters by means
of the new table entity “Chapter”.

4 DSTL Implementation

In this section we present the implementation of our DSTL by using the model transformation language ATL.
The implementation consists of a transformation, written in ATL that takes two inputs: a relational database
(conforming the relational metamodel in Figure 2) and a transformation specified in the relational
transformation language (conforming the DSTL metamodel in Figure 3). The output of such transformation is
the database (conforming the relational metamodel in Figure 2) that is expected to be produced by the
application of the input transformation on the input model. Figure 7 illustrates this implementation schema.

Figure 7. DSTL implementation schema using ATL transformations

In our implementation we use the ATL’s refinement facility in order to simplify the transformation algorithm.
The refinement mechanism allows us to write code only for the part of the source model that is modified by
the transformation, while the rest of the model is translated from source to target without any modification.

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 57

Each syntactic construct of the DSTL is implemented by one or more ATL transformation rules. The simplest
construct named ChangeName is implemented by a single transformation rule, as follows:

Notice that we have overcome the limitation of not being able to match more than one element at the same
time by using helper functions. We have defined three helper functions that allow us to distinguish whether
each selected element must be processed or not. The implementation of one of such functions is:

Next, we introduce the implementation of the extractCommonData construct. This construct is implemented
by three transformation rules, each rule works in each level of the relational model (i.e., model, scripts and
data values).

• The following rule realizes the transformation on the data model:

The rule transforms the selected column to a foreign reference to the target table. The creation of the
target table is considered in the imperative part of the rule.

• The following rule implements the transformation on the scripts:

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 58

The rule transforms the direct references to the extracted column, by an indirect reference to the
column (not primary key) of the new table.

• The following rule defines the transformation on the data values:

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 59

The rule above moves each data in the source column to the target table. The rule also specifies that these
values are replaced by the corresponding values of the primary key in the new table. Finally, the
implementation of the factorize construct is similar to the previous implementations and it is not presented
here for space limitations. The complete implementation of this relational DSTL can be downloaded from
http://sol.info.unlp.edu.ar/eclipse.

5 An alternative implementation approach

In order to show a wider range of alternatives, in this section we carry out the DSL implementation using a
slightly different approach. A MOFScript transformation [Oldevik, 2006] takes the constructs of the relational
transformation language as input and generates an ATL transformation. This means, we implement a
translation from the domain specific transformation language to the general purpose transformation language.
The translation rules are written in the model-to-text transformation language MOFScript. The generated ATL
program can be seen as the semantics interpretation of our DSTL.

Figure 8 explains this translational approach for the definition of the semantics of the domain specific
transformation language.

.
Figure 8. DSTL implementation schema using a translational approach.

In order to transform the DSTL sentences using MOFScript, the metamodel describing its abstract syntax
must have a parent element (root). Figure 9 shows the customized metamodel for our relational
transformation language.

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 60

Figure 9. customized metamodel of the domain specific transformation language

The MOFScript transformation creates an ATL file, and each DSL sentence is translated by the application of
a separate transformation rule.

A rule named mapTransformation() is defined for each DSTL sentence. The following listing shows the
implementation of these rules.

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 61

For example, given the following DSTL sentence:

The ATL code generated by the application of the MOFScript transformation is:

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 62

The target ATL transformation takes a relational model as input and generates the transformed model,
according to the semantics of the source relational transformation.

Although both implementation approaches look quite similar, there are differences and both have pros and
cons. The disadvantage of the last schema lies in the difficulty of writing a transformation to generate an ATL
transformation, where in fact we need two transformation steps. On the contrary, within the former scheme,
the ATL translation is written directly, however this single transformation is much more complex.

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 63

6 Related work

There are a number of features of our work that can be contrasted to other current approaches:

Abstraction and modularization of model transformations:

Transformations are used more frequently, leading to the creation of increasingly bigger model transformation
scripts. Our approach can be seen as a technique for transformation abstraction and modularization in that
each high level transformation (written in the DSTL) is associated with a lower level transformation (written
in GPTL), but the users do not need to be aware of the details of the low level transformation. In this sense,
those approaches that propose techniques to build complex transformations by composing smaller
transformation units are related to our proposal. In this category we can mention the composition technique
described by Kleppe [2006], the Model Bus approach [Blanc et al., 2004], the modeling framework for
compound transformations defined by Oldevik [2005] and the module superimposition technique described
by Wagelaar [2008], among others. In contrast to these approaches, our proposal generates the composed
transformation specification in a more simple way, without introducing any explicit composition machinery.

Creating languages that abstract out from other more abstract languages:

This subject has been intensely discussed in the literature on DSLs. For example, the MetaBorg [Bravenboer
and Visser, 2004] is a transformation-based approach for the definition of embedded textual DSLs
implemented based on the Stratego framework. Similarly to our work, the MetaBorg approach defines new
concepts (comparable to our notion of an abstract language) by mapping them to expansions in the host
language (comparable to our notion of a concrete language). The work in [Johannes et al., 2009] shows how
to develop DSLs as abstractions of other DSLs by transferring translational approaches for textual DSLs into
the domain of modeling languages. The underlying notion of an embedded DSL seems to have been discussed
first by Hudak [1998]. The idea of forwarding has been introduced in [Van Wyk et al., 2002]. An important
distinction between these works and our proposal is the application to the model transformation field.

Concrete-syntax-based transformations:

Contrary to traditional approaches to model transformation, the work presented in [Baar and Whittle, 2007],
uses the concrete syntax of a language for expressing transformation rules, which is very similar to our
proposal. They claim that this simplifies the development of model transformations, as transformation
designers do not need deep knowledge of the language's metamodel. In our approach, we use the abstract
DSTL with a similar purpose: users do not need to count with a deep knowledge of the abstract syntax of the
involved modeling languages, but they just use the simple syntax of the DSTL.

7 Conclusions

We have presented a translational approach for defining abstract domain-specific transformation languages
(DSTLs) based on concrete general purpose transformation languages (such as ATL).

In contrast to an approach where a general purpose transformation language is used, our approach provides
the following benefits:

• The complexity of transformation programs gets reduced. A program is composed by few lines of
high expressive commands.

• Domain experts will feel more comfortable using a specific language with constructs reflecting well-
known concepts (such as, table and column in our example); consequently it is predictable that they
will be able to write more understandable and reusable transformations in a shorter time.

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 64

• Transformation developers do not need to know the intricate details of model transformation
languages, as these are encapsulated in the DSL constructs. This leads to a natural separation into a
language designer and a transformation designer role, with a reduced learning effort for the later.

Additionally we propose that the semantics of such DSTL is defined using a transformation language itself.
We have taken an approach where the DSTL instance is not compiled into source code but transformed onto a
generic model transformation language. In this case we have used ATL. This fact provides several
advantages:

• The language semantics is formally described, and it is executable;

• The semantics is understandable because it is written in a well-known language;

• The semantics can be easily modified. Although the ATL transformation may be considered as a
compiler, the amount of programming skills required to create it is much lesser than for creating a
compiler to source code.

As an experimental example in this paper we have reported the definition of a DSTL in the domain of
databases and we have described its implementation in ATL. The experience was successful, showing the
advantages of defining DSTL for model refactoring – i.e., transformations that locally change an existent
model producing a new model that conforms to the same metamodel. Currently we are working in the
definition of other DSTL in other domains.

It is also important to take into account the benefits coming from the platform-independence of the
transformation language: we are able to transform and execute its instances onto different generic
transformation language platforms – e.g., we may use QVT instead of ATL.

Acknowledgments

This work has been sponsored by Microsoft® under the LACCIR RFP 2008 Research Founding Initiative.

References

ATLAS team (2006). ATLAS MegaModel Management (AM3), Home page:
http://www.eclipse.org/gmt/am3/.

Baar, T., and Whittle, J. (2007). On the Usage of Concrete Syntax in Model Transformation Rules. In Book:
Perspectives of Systems Informatics. LNCS 4378, Springer Heidelberg, Berlin.

Barbero, M., Bézivin, J., and Jouault, F. (2007). Building a DSL for Interactive TV Applications with
AMMA. In TOOLS Europe’07: Proceedings of the Workshop on Model-Driven Development Tool
Implementers Forum. June. Zurich, Switzerland.

Bézivin, J., Jouault, F., Kurtev, I., and Valduriez, P. (2006). Model-based DSL Frameworks. OOPSLA
Companion’06, pp. 602–616.

Blanc, X., Gervais, M., Lamari, M. and Sriplakich, P. (2004). Towards an integrated transformation
environment (ITE) for model driven development (MDD). In SCI’04: Proceedings of the 8th World Multi-
Conference on Systemics, Cybernetics and Informatics. July. USA.

Bravenboer, M., and Visser, E. (2004). Concrete syntax for objects: Domain-specific language embedding
and assimilation without restrictions. In OOPSLA'04: Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, ACM Press. pp. 365–
383.

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 65

Cook, S., Jones, G., Kent, S., and Wills, A. (2007). Domain-Specific Development with Visual Studio DSL
Tools. Addison-Wesley Professional. ISBN 0-321-39820-3.

Czarnecki, K., and Helsen, S. (2006). Feature-based survey of model transformation approaches. IBM System
Journal, 45(3): 621–645. July.

Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., and Pierantonio, A. (2009): Extending AMMA for
Supporting Dynamic Semantics Specifications of DSLs. Downloaded March:
http://hal.ccsd.cnrs.fr/docs/00/06/61/21/PDF/rr0602.pdf

Greenfield, J., Short, K., Cook, S., and Kent, S. (2004). Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. Wiley.

Gronback, R. (2009). Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit. Addison-
Wesley Professional. ISBN: 0-321-53407-7.

Hudak, P. (1998). Modular domain specific languages and tools. In ICSR’98: Proceedings of the 5th
International Conference on Software Reuse, IEEE Computer Society Press. pp. 134–142. June. Victoria,
B.C., Canada.

ISIS-GME (2008). GME: The Generic Modeling Environment. ISIS Institute, School of Engineering,
Vanderbilt University, Nashville, TN, USA. Reference site: http://www.isis.vanderbilt.edu/Projects/gme

Johannes, J., Zschaler, S., Fernandez, M., Castillo, A., Kolovos, D., and Paige, R. (2009). Abstracting
Complex Languages through Transformation and Composition. In MoDELS’09: Proceedings of the
ACM/IEEE 12th International Conference on Model Driven Engineering Languages and Systems. USA,
LNCS, Springer. October. Denver, Colorado, USA.

Jouault, F., and Kurtev, I. (2006). Transforming Models with ATL. In Proceedings of Satellite Events at the
MoDELS 2005 Conference. LNCS 3844, Springer-Verlag, pp. 128–138.

Jouault, F., Bézivin, J., Consel, C., Kurtev, I., and Latry, F. (2006). Building DSLs with AMMA/ATL, a Case
Study on SPL and CPL Telephony Languages. In ECOOP’06: Proceedings of the 1st Workshop on
Domain-Specific Program Development (DSPD), July. Nantes, France.

Kleppe, A. (2006). MCC: A Model Transformation Environment. A. Rensink and J. Warmer (Eds.):
ECMDA-FA 2006, LNCS 4066, Springer-Verlag, pp. 173–187, June. Spain.

Kleppe, A., Warmer, J., and Bast, W. (2003). MDA Explained: The Model Driven Architecture: Practice and
Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Mernik, M., Heering, J., and Sloane, A. (2005). When and how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316–344.

Oldevik, J. (2005). Transformation Composition Modeling Framework. In DAIS’05: Proceedings of the 5th
IFIP International Conference on Distributed Applications and Interoperable Systems. LNCS 3543, Springer-
Verlag, pp. 108–114, June. Athens, Greece.

Oldevik, J. (2006). MOFScript User Guide. Version 0.6 (MOFScript v 1.1.11).

OMG/MOF (2003). Meta Object Facility (MOF) 2.0. OMG Adopted Specification. October.
http://www.omg.org

OMG/QVT (2005). MOF QVT Adopted Specification 2.0. OMG Adopted Specification. November.
http://www.omg.org

Pons, C., Giandini, R., and Pérez, G. (2010). Desarrollo de Software Dirigido por Modelos. Conceptos
teóricos y su aplicación práctica. Editorial: EDUNLP and McGraw-Hill Education.

Sánchez Cuadrado, J., García Molina, J., and Menarguez Tortosa, M. (2006). RubyTL: A Practical,
Extensible Transformation Language. In Proceedings of European Conference on Model Driven
Architecture – Foundations and Applications, LNCS 4066. Springer-Verlag.

Irazabal et al., Model Transformation as a mechanism for the implementation of domain specific transformation
languages, EJS 9(1) 49-66 (2010) 66

Stahl, T., and Völter, M. (2006). Model-Driven Software Development. John Wiley & Sons, Ltd.

Van Wyk, E., de Moor, O., Backhouse, K., and Kwiatkowski, P. (2002). Forwarding in attribute grammars for
modular language design. In Horspool, R.N., ed.: Int Conf. on Compiler Construction. LNCS 2304,
Springer, Berlin / Heidelberg pp. 128–142.

Wagelaar, D. (2008). Composition Techniques for Rule-based Model Transformation Languages. In
ICMT’08: Proceedings of the International Conference on Model Transformation. July. Zurich,
Switzerland.

