
Variable-Based Analysis for Traceability in Models

Transformation

Omar Martínez Grassi, Claudia Pons

LIFIA, Facultad de Informática, UNLP, CAETI - Universidad Abierta Interamericana (UAI)

omartinez@rionegro.com.ar, cpons@lifia.info.unlp.edu.ar

Abstract. Model-driven development (MDD) is a software engineering

approach consisting of models and their transformations. MDD gives the basic

principles to visualize a software system as a set of models that are repeatedly

refined until reaching a model with enough details to implement. Model-driven

architecture (MDA) is the MDD view of Object Management Group. MDA

main goal is to separate the system functional specification from the

implementation specification on an given platform. Traceability, as a desired

feature of transformations, has a major role within the paradigm since it allows

the possibility to evaluate the impact at advanced stages of changes in

requirement specification that were elicited early, and keeping consistency

between models that guide the development, among other benefits. This paper

proposes a mechanism to get traceability information from a transformation

definition written in QVT language using a trace inference strategy defined ad

hoc. This process is fully automated and does not depend on the execution of

the transformation.

1 Introduction

The Model Driven Architecture (MDA) is a software development framework defined

by the Object Management Group. The main concept to MDA is the importance of

models in the software development process, and their transformations [8]. Within

MDA, the software development process is driven by the activity of modeling the

software system. MDA proposes a development cycle based on the transformation of

a high-level model into another, with a lower level of abstraction, which eventually

will become source code.

The first model MDA defines is a model of a high level of abstraction that is

independent of any implementation technology. This is called Platform Independent

Model or PIM. In the next step, the PIM is transformed into one or more Platform

Specific Models (PSM). A PSM specifies a system in terms of the implementation

constructs available in one specific implementation technology. The final step in the

development process is the transformation of each PSM into code. The MDA defines

the PIM, PSM and code, and also defines how these relate to each other. A PIM

should be created, then transformed into one or more PSMs, which then are

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 84

transformed into code. A model transformation is a process described by a definition

consisting of rules, which specify how a source model element is mapped into another

target model element.

The MDA process may look like traditional development. However, there is a

crucial difference: traditionally, the transformation from model to model, or from

model to code, is done mainly by hand. In contrast, MDA transformations are always

executed by tools. Many tools are able to transform a PSM to code, there is nothing

new. What is new in MDA is that the transformation from PIM to PSM is automated

as well. In particular, we are interested in the study of the property of traceability in

model transformations.

Some years ago, the OMG adopted QVT (Query/View/Transformation) language

as a standard of model transformation. QVT is a hybrid declarative/imperative

language [9], which integrates the standard OCL 2.0 and extends its imperative

version, defining three specific domain languages (DSL) called Relations, Core (both

declarative) and Operational Mappings (imperative). Unfortunately, there are not

many tools that implement QVT languages. We can find mediniQVT [1] as a QVT

Relation implementation, SmartQVT [11] (QVT Operational Mappings) and OptimalJ

(QVT Core), for example. In this context, the Eclipse Modeling Framework (EMF)

Project [3] provides a modeling environment and code generation for application

development based on models that can be specified using a subset of the Java

language (known as Java Annotated), XML documents or modeling tools such as

Rational Rose ™. The project includes Ecore, an implementation of Meta Object

Facility Standard (MOF) [9], a fundamental tool for model representation.

This paper makes a proposal for traceability support in model transformation using

QVT code analysis, which allows the inference of traces between the source and

target models from the specification of the transformation, systematically, without

requiring additional code nor intervention from the developer.

2 Traceability in model transformations

2.1 The traceability concept

The IEEE Standard Glossary of Software Engineering Terminology [10] defines

traceability as follows:

1. The degree to which a relationship can be established between two or more

products of the development process, especially products having a predecessor-

successor or master-subordinate relationship to one another; for example, the

degree to which the requirements and design of a given software component

match;

2. The degree to which each element in a software development product establishes

its reason for existing; for example, the degree to which each element in a bubble

chart references the requirement that it satisfies.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 85

This early definition is strongly influenced by the originators of traceability, i.e.

requirements management community. However, it is possible to find a much broader

one, more useful for the purposes of model-driven development. In [2], Aizenbud

defines traceability as “any relationship that exists between artifacts involved in the

software engineering life cycle”. In addition, as the author explains, this definition

includes, but it is not limited to the following:

• Explicit links or mappings that are generated as a result of transformations, both

forward (e.g., code generation) and backward (e.g., reverse engineering).

• Links that are computed based on existing information (e.g., code dependency

analysis).

• Statistically inferred links, which are links that are computed based on history

provided by change management systems on items that were changed together as a

result of one change request.

So traceability is achieved by defining and maintaining relationships between

artifacts involved in the software-engineering life cycle during system development.

2.2 Related work

The automatic generation of traceability information has been the subject of

several research papers. One of the first studies of traceability in model

transformations can be found in [7]. It is based on traces generation through a loosely

coupled process, without altering the definition of model transformations in the

context of language ATL (ATLAS Transformation Language), a model

transformation language [6] stood as a candidate in the RFP (Request For Proposal) of

QVT launched by the Object Management Group (OMG) [5].

A more complex approach can be found in [4]. In this study, Grammel et al.

proposes a generic traceability framework for augmenting arbitrary model

transformation approaches with a traceability mechanism. This generic traceability

framework is based on a domain-specific language for traceability (Trace-DSL),

presenting the formalization on integration conditions needed for implementing

traceability. Essentially, this language agnostic Trace-DSL provides a unified

traceability metamodel, yet accounts for an adequate expressiveness of traceability

data needed for traceability-specific scenarios. To achieve this dual nature, the Trace-

DSL is featured with an extensibility mechanism based on facets. The work covers a

wide range of traceability aspects at the model-driven development paradigm, and

proposes a generic solution for different model transformation languages.

In Section 5 we will discuss further details of both implementations, and will

compare them with the scheme presented in this work.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 86

3 QVT Relations

To understand the proposal we need to review some core concepts of the language

in which the analyzed model transformations are written. In this section, we will make

a brief review of the language definition and its generalities.

3.1 Transformations and model types

In the relations language, a transformation between candidate models is specified

as a set of relations that must hold for the transformation to be successful [9]. A

candidate model is any model that conforms to a model type, which is a specification

of what kind of model elements any conforming model can have, similar to a variable

type specifying what kind of values a conforming variable can have in a program.

Candidate models are named, and the types of elements they can contain are restricted

to those within a set of referenced packages. An example is:

 transformation umlRdbms(uml:SimpleUML, rdbms:SimpleRDBMS)

In this declaration named “umlRdbms” there are two typed candidate models:

“uml” and “rdbms”. The model named “uml” declares the SimpleUML package as its

metamodel, and the “rdbms” model declares the SimpleRDBMS package as its

metamodel. A transformation can be invoked either to check two models for

consistency or to modify one model to enforce consistency.

3.2 Relations and Domains

Relations in a transformation declare constraints that must be satisfied by the

elements of the candidate models. A relation, defined by two or more domains and a

pair of when and where predicates, specifies a relationship that must hold between the

elements of the candidate models.

top relation PackageToSchema {

 domain uml p:Package {

 name = pn

 };

 domain rdbms s:Schema {

 name = pn

 };

}

Fig. 1. Relations and domains example

A domain is a distinguished typed variable that can be matched in a model of a

given model type. A domain has a pattern, which can be viewed as a graph of object

nodes, their properties and association links originating from an instance of the

domain’s type. Alternatively a pattern can be viewed as a set of variables, and a set of

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 87

constraints that model elements bound to those variables must satisfy to qualify as a

valid binding of the pattern. A domain pattern can be considered a template for

objects and their properties that must be located, modified, or created in a candidate

model to satisfy the relation.

relation ClassToTable {

 domain uml c:Class {

 namespace = p:Package {},

 kind = 'Persistent'

 name = cn

 };

 domain rdbms t:Table {

 schema = s:Schema {},

 name = cn,

 column = cl:Column {

 name = cn + '_tid',

 type = 'NUMBER'

 },

 primaryKey = k:PrimaryKey {

 name = cn + '_pk',

 column = cl

 }

 };

 when {

 PackageToSchema(p,s);

 }

 where {

 AttributeToColumn(c,t);

 }

}

Fig. 2. When and Where clauses example

In the example at Figure 1 two domains are declared that will match elements in

the “uml” and “rdbms” models respectively. Each domain specifies a simple pattern, a

package with a name, and a schema with a name, both the “name” properties being

bound to the same variable “pn” implying that they should have the same value.

3.3 When and Where clauses

A relation also can be constrained by two sets of predicates, a when clause and a

where clause, as shown in the example relation ClassToTable (Figure 2). The when

clause specifies the conditions under which the relationship needs to hold, so the

relation ClassToTable needs to hold only when the PackageToSchema relation holds

between the package containing the class and the schema containing the table. The

where clause specifies the condition that must be satisfied by all model elements

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 88

participating in the relation, and it may constrain any of the variables in the relation

and its domains. Hence, whenever the ClassToTable relation holds, the relation

AttributeToColumn must also hold.

The when and where clauses may contain any arbitrary OCL expressions in

addition to the relation invocation expressions. Relation invocations allow complex

relations to be composed from simpler relations.

3.4 Top-level Relations

A transformation contains two kinds of relations: top-level and non-top-level. The

execution of a transformation requires that all its top-level relations hold, whereas

non-top-level relations are required to hold only when they are invoked directly or

transitively from the where clause of another relation.

transformation umlRdbms(uml:SimpleUML, rdbms:SimpleRDBMS) {

 top relation PackageToSchema() {...}

 top relation ClassToTable {...}

 relation AttributeToColumn {...}

 ...

}

Fig. 3. Top-level and non-top-level relations in QVT

A top-level relation has the keyword top to distinguish it syntactically. In the

example at Figure 3, PackageToSchema and ClassToTable are top level relations,

whereas AttributeToColumn is a non-top-level relation.

3.5 Check and enforce

Whether or not the relationship may be enforced is determined by the target

domain, which may be marked as checkonly or enforced. When a transformation is

enforced in the direction of a checkonly domain, it is simply checked to see if there is

a valid match in the relevant model that satisfies the relationship. When a

transformation executes in the direction of the model of an enforced domain, if

checking fails, the target model is modified so as to satisfy the relationship, i.e., a

check-before-enforce semantics. In the example below (Figure 4), the domain for the

“uml” model is marked checkonly and the domain for the “rdbms” model is marked

enforce.

top relation PackageToSchema {

 checkonly domain uml p:Package {

 name = pn

 };

 enforce domain rdbms s:Schema {

 name = pn

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 89

 };

}

Fig. 4. Relations and domains example

If we are executing in the direction of “uml” and there is a schema in “rdbms” for

which there is no corresponding package with the same name in “uml”, it is simply

reported as an inconsistency. Then a package is not created because the “uml” model

is not enforced, it is only checked.

However, if we are executing the transformation umlRdbms in the direction of

“rdbms”, then for each package in the “uml” model the relation first checks if there is

a schema with the same name in the “rdbms” model, and if there is not, a new schema

is created in that model with the given name. To consider a variation of the above

scenario, if we execute in the direction of “rdbms” and there is not a corresponding

package with the same name in “uml”, then that schema will be deleted from the

“rdbms” model, thus enforcing consistency in the enforce domain. These rules apply

depending on the target domain only. In this execution scenario, schema deletion will

be the outcome even if the “uml” domain is marked as enforced, because the

transformation is being executed in the direction of “rdbms”, and object creation,

modification, and deletion can only take place in the target model for the current

execution.

4 Variables-based analysis

The present study addresses the problem of obtaining traceability information

automatically, i.e. without having to depend on someone to specify how target model

elements are generated from a source model or the execution of a transformation.

Unlike other similar proposals, this study suggests that given the syntactic-

grammatical features of QVT language1, it is possible to infer some kind of traces by

analyzing the source code. This analysis is the recognition of certain structures within

the specification of a model transformation written in QVT Relations language, which

can be used to discover traces between source and target model elements.

We have identified four types of traces that can be recognized with this approach:

• Simple trace: Specifies how an element from source model maps to an element in

the target model (one-to-one relationship).

• Multitrace: This specifies how multiple element maps to a simple target model

element (many-to-one relationship).

• Conditional trace: This kind of trace represents those potential traces that can not

be confirmed because they respond to a conditional statement (e.g. if-then-else

structure) within the QVT code and therefore depend on the transformation.

1 OMG standard model transformation language

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 90

• Constant trace: This type of trace models situations where a target element assumes

a constant value in a transformation specification.

Fig. 5. Different kind of traces detected with our approach

Figure 5 shows the four kind of traces that can be detected with our mechanism.

Let M1 and M2 be two different models, and T a QVT transformation that defines a

conversion from M1 to M2, then a simple trace Ts specifies the mapping of a single

element from source model, M1, on an element of target model M2, in a

transformation T. A multiple trace Tm represents a many-to-one relationship between

multiple elements from source model and a single element from destination model. A

conditional trace Tc specifies two potential traces between a couple disjoint sets of

elements from source model and a target model element. Finally, a constant trace Tk

models the assignment of a constant value on a target model element within a

transformation definition.

This section describes the features that allow the inference of all these kind of

traces.

4.1 Trace inference analysis

As we point out previously, our work is based on the hypothesis that it is possible

to infer traces directly from QVT code by implementing an algorithm for

identification of certain grammatical or lexical structures, or patterns, in the

specification of a model transformation. We will discuss now the patterns that allow

traces derivation, illustrating each case with QVT source fragments in which they are

present.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 91

Case No.1: Trace inference using an auxiliar variable.

When a top-level rule, or a non-top-level rule invoked from a statement of a when,

or where, clause of a top-level rule, assigns a value to a target model element defined

in the scope of an enforce domain, by using a variable previously used on a source

model element defined similarly in a checkonly domain, then we say that the source

model element will map directly to the target model element. If we take the QVT

code fragment in Figure 6a, we see that the variable called pn allows to infer a trace

between umlName and rdbmsName, attributes of entities UmlPackage and

RdbmsSchema respectively.

top relation PackageToSchema {

 pn : String;

 checkonly domain uml p:SimpleUML::UmlPackage

 {

 umlName = pn

 };

 enforce domain rdbms s:SimpleRDBMS::RdbmsSchema

 {

 rdbmsName = pn

 };

}

a. Trace inference using an auxiliar variable

relation ClassToPkey {

 cn : String;

 checkonly domain uml c:SimpleUML::UmlClass

 {

 umlName = cn

 };

 enforce domain rdbms k:SimpleRDBMS::RdbmsKey

 {

 rdbmsName = cn + '_pk'

 };

}

b. Trace inference using a function of an auxiliar variable

Fig. 6. Trace inference Cases No.1 and No.2

Case No.2: Trace inference using an expression in terms of an auxiliary variable.

This case is a generalization of the described above, the difference is based on the

target model element, defined in the scope of the enforce domain, will be a function

of the variable used for the same purpose on the source model element (Figure 6b).

As can be seen, the expression describing the value that the attribute named

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 92

rdbmsName will take after transformation is given by a function F of the variable cn,

defined as F(cn) = cn + ‘_pk’, where the operator ‘+’ represents string concatenation.

In this case, we can infer that all attribute rdbmsName of a RdbmsKey entity of a

SimpleRDBMS model will be equal to the entity UmlClass attribute, called umlName,

from SimpleUML model, concatenated with the suffix ‘_pk’ or, equivalently, that

rdbmsName = umlName + ‘_pk’.

top relation ClassToTable {

 ...

 enforce domain rdbms t : SimpleRDBMS::RdbmsTable {

 rdbmsSchema = s : SimpleRDBMS::RdbmsSchema {},

 rdbmsName = cn,

 rdbmsColumn = cl : SimpleRDBMS::RdbmsColumn {

 rdbmsName =cn + '_tid',

 rdbmsType = 'NUMBER'

 },

 rdbmsKey = k : SimpleRDBMS::RdbmsKey {

 rdbmsColumn = cl : SimpleRDBMS::RdbmsColumn{}

 }

 };

 ...

}

Fig. 7. Trace inference using a constant (Case No.3)

Case No.3: Trace inference using a constant.

It is defined for those cases in which a target model element defined in the scope of

the enforce domain of a relation is initialized to a constant value. Taking the example

of the code presented in Figure 7, we see that the attribute rdbmsType of any entity

RdbmsColumn be equal to the constant ‘NUMBER’, regardless of the values of the

associated source model elements.

Case No.4: Trace inference using an auxiliary variable defined as a function in a

Where clause.

This case is analogous to the first kind of trace, described in Case No.1. The

difference is that the auxiliary variable is defined as a function of other variables in a

statement in the Where clause of the relation (see Figure 8). In this case we infer both

that the name (attribute rdbmsName) of a column (entity RdbmsColumn) within a

foreign key (entity RdbmsForeignKey) will be the concatenation of the source class

(entity umlSource) name (attribute umlName) with the symbol ‘_’ to the name

(attribute umlName) of the association (entity UmlAssociation), concatenated in turn

with the symbol ‘_’ to the name (attribute umlName) of the target class (entity

umlDestination) + ‘_tid’, and that the name (attribute rdbmsName) of the foreign key

(entity rdbmsForeignKey) is analogous to the former, without suffix ‘_tid’.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 93

top relation AssocToFKey {

 an, scn, dcn, fkn, fcn : String;

 checkonly AssocToFKeydomain uml a:SimpleUML::UmlAssociation {

 umlNamespace = p : SimpleUML::UmlPackage {},

 umlName = an,

 umlSource = sc : SimpleUML::UmlClass {

 umlKind = 'Persistent',

 umlName = scn

 },

 umlDestination = dc : SimpleUML::UmlClass {

 umlKind = 'Persistent',

 umlName = dcn

 }

 };

 enforce domain rdbms fk : SimpleRDBMS::RdbmsForeignKey {

 rdbmsName = fkn,

 rdbmsOwner = srcTbl : SimpleRDBMS::RdbmsTable {

 rdbmsSchema = s : SimpleRDBMS::RdbmsSchema {}

 },

 rdbmsColumn = fc : SimpleRDBMS::RdbmsColumn {

 rdbmsName = fcn,

 rdbmsType = 'NUMBER',

 rdbmsOwner = srcTbl

 },

 rdbmsRefersTo = pKey : SimpleRDBMS::RdbmsKey {

 rdbmsOwner = destTbl : SimpleRDBMS::RdbmsTable {}

 }

 };

 when {

 ClassToPkey(dc, pKey);

 PackageToSchema(p, s);

 ClassToTable(sc, srcTbl);

 ClassToTable(dc, destTbl);

 }

 where {

 fkn = scn + '_' + an + '_' + dcn;

 fcn = fkn + '_tid';

 }

}

Fig. 8. An auxiliar variable and expression within a Where clause (Case No.4)

Case No.5: Trace inference by a conditional If-Then-Else statement.

The following case is defined for those situations where a mandatory rule (top-

level), or a non-top-level rule invoked from a statement of a when, or where, clause of

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 94

a top-level rule, assigns a value to a target model element defined in the scope of an

enforce domain by using a conditional statement If-Then-Else, whose expression

within “then” clause (or “else” clause) includes a variable previously used on a source

model element similarly defined in the scope of a checkonly domain. In this case, we

say that the source model element will map conditionally, or partially, in the target

model element.

relation PrimitiveAttributeToColumn {

 an, pn, cn, sqltype : String;

 checkonly domain uml c : SimpleUML::UmlClass {

 umlAttribute = a : SimpleUML::UmlAttribute {

 umlName = an, (1)

 umlType = p :

 SimpleUML::UmlPrimitiveType {

 umlName = pn

 }

 }

 };

 enforce domain rdbms t : SimpleRDBMS::RdbmsTable {

 rdbmsColumn = cl : SimpleRDBMS::RdbmsColumn {

 rdbmsName = cn, (2)

 rdbmsType = sqltype (6)

 }

 };

 primitive domain prefix : String;

 where {

 cn = if (prefix = _) then (3)

 (an) (4)

 else

 (prefix + '_' + an) (5)

 endif;

 sqltype = PrimitiveTypeToSqlType(pn); (7)

 }

}

Fig. 9. Cases No.5 y No.6 example

Figure 9 shows a conditional trace example at PrimitiveAttributeToColumn

relation. Attribute rdbmsName from RdbmsColumn is assigned to a variable cn (2),

which is initialized within Where clause with a conditional statement (3) depending

on the value of prefix primitive domain. This way, replacing value of variable an, we

can infer the following trace:

 an | prefix + ‘_’ + an→rdbmsName

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 95

This means that for any couple (UmlClass, RdbmsTable) that satisfies the

PrimitiveAttributeToColumn relation, then the name of each column of resultant table

(rdbmsName attribute) will be equal to the name of the class attribute (umlName

attribute) from origin (4), eventually preceded or not by string character prefix (5).

Case No.6: Trace inference by a query.

The sixth case is defined for those situations where a mandatory rule (top-level), or

a non-top-level rule invoked from a statement of a when, or where, clause of a top-

level rule, assigns a value to a PrimitiveTypeToSqlType() target model element

defined in the scope of an enforce domain by using a query, directly from a domain

expression or by using an assigned variable within where clause of the relation, as

well. In the example at Figure 9, the algorithm allow us to infer simple trace:

PrimitiveTypeToSqlType(umlName::UmlPrimitiveType)→rdbmsType::RdbmsColumn

This means that for any couple (UmlClass, RdbmsTable) that satisfies the

PrimitiveAttributeToColumn relation, the data type of any column (rdbmsType

attribute) of the table (6) will be given by the query PrimitiveTypeToSqlType(), a

function that take a class attribute data type and returns the SQL equivalent data type

(7).

4.2 Advantages and disadvantages of variable-based analysis

The technique presented here is fully automatic, i.e. no stage of the analysis

process requires the intervention of a human being to operate. As such, it colaborates

with the productivity of enginners by removing effort and possible errors. Unlike

some implementations, such as mediniQVT [1], traceability information is generated

at model level, not instances, so it allows to determine not only the mapping of one

element into another, but expression or form of this transformation, regardless of the

source model instance to be transformed or the corresponding target model instance.

This, in turn, allows to verify and eventually force the consistency and integrity of the

relationship between the two models, which can be especially helpful when the target

model is modified unilaterally, and not as a result of changes in the source model then

processed by the transformation engine, which would be the natural flow of the

modification process.

Another advantage observed is that obtained traces do not depend on

transformation process, but only its definition. Consequently, this can help the

developer as a debugging tool in the depuration of the transformation specification,

providing indications of the results to be obtained after the execution. This

independence, in turn, provides flexibility and facilitates maintaining traceability

information since it can be stored in a repository, or generated ad hoc without

polluting neither models nor transformation specification.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 96

Fig. 10. Traceability metamodel implemented by QVTrace

The main disadvantage of the proposal is that analysis of the specification of a

transformation and source and target models, should be performed twice: for the

analysis based on variables (the tool that implements it), and at the time of execution

of the processing by the engine that implements QVT. Moreover, the generated traces

are not necessarily the only existing. This paper does not attempt to demonstrate so.

4.3 QVTrace

The described approach has been implemented in a tool called QVTrace. It is an

Eclipse plugin, which despite being a prototype allowed us to implement this

technique and check its applicability in the context of MDD (Model-Driven

Development). QVTrace has been developed with a vision to be a complementary

tool to other available at model-driven development paradigm. Being an Eclipse

plugin, offers versatility and enhances interoperability with other related programs. Its

inputs are the definition of the transformation (QVT code) and source and destination

models in Ecore format, standard representation of models in the EMF [3], which is

the framework for model-driven development of Eclipse, and the generated output is a

collection of traces defined in an ad-hoc metamodel. This implementation includes all

six trace inference cases described in this paper.

Traceability Metamodel.

To maintaining traceability information a metamodel based on simplicity was

developed, tailored to the needs of the problem addressed (Figure 10). It consists of a

class named Trace, which maintains all the information associated with a trace:

• The name of the trace, an identifier formed by the name of the model elements that

compose it (sourceElement2targetElement).

• Source and target model elements that conforms the trace (references source and

target in the diagram of Figure 10).

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 97

• The expression of the trace (expression attribute), a character string that represents

the traceability relationship between source model element and destination model

element of the trace.

• The relation in QVT code where the trace was found (reference relation).

Fig. 11. Trace inference support in QVTrace

The elements related by a trace are TraceElement type, which are in turn

TraceableModelElement subtypes, an abstract class that determines what kind of

model element can be included in a trace. This design is closely related to the

representation of models used. In the specific case of QVTrace, Ecore model

representation was used, the EMF model representation standard. Every

TraceableModelElement object contains a reference to an EStructuralFeature object,

so a trace will only relate EAttribute or EReference objects from source and target

models, as we will see later.

In contrast to the metamodels proposed in similar works, the developed traceability

model presented here represents traces as an univocal relationship between a source

and a destination model elements, while in most cases, this relationship is generalized

as a many-to-many relationship. The proposal does provide a possible trace of n

source model elements to one target model element, which is typified by MultiTrace

class, subclass of Trace. This approach, which could be considered a limitation by

design, actually responds to a virtue. The trace inference algorithm works at the

minimum traceable element level in the context of model representation chosen,

Ecore, and by the features of variable-based analysis, if one or more source model

elements generate multiple destination model elements, then multiple traces

MultiTrace or Trace will generate, as appropriate.

The second difference with most proposed metamodels in related works has to do

with the semantics of the trace. One of the attributes of the Trace class, called

expression, stores the statement that reveals the meaning of transformation, i.e. how a

source model element is transformed into a given target model element. As an

example, let A2B be a transformation where element x from model A is converted

into an element y from model B, so we have a trace x→y in which expression will be

the statement y=x , adding the meaning to relationship.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 98

Fig. 12. General view of QVTrace

Trace inference support.

Trace inference in QVtrace is supported through the scheme proposed in Figure 11.

It consists of a component called TraceAnalizer, which using the source and target

models (object Model), the definition of a QVT transformation (object

TransformationQVT), and a traceability strategy (components that implement the

interface ITraceStrategy) infers and generates the corresponding traces. Tracing

strategy is essentially the mechanism by which corresponding traces are obtained. The

design is intended for this component can be easily extended or replaced by another

one that implements the interface method getTraces(), which as shown in the picture

receives a QVT transformation, a pair of source and target models, and returns results

in a collection (Vector) of Trace objects. The responsibility for creating trace objects

is in charge of TraceFactory component, which is the Trace objects maker (see arrow

with a dotted line in the diagram). Any traceability strategy implemented must use

this object factory for creating them.

Solution design.

In summary, the proposed QVTrace workflow begins processing the input data,

and finish with obtained traces. This process can be divided into four phases:

1. Reading and parsing the source and target models, presented in Ecore format, and

the QVT transformation specification, from files.

2. Creating internal representation objects for input and output models, and

transformation.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 99

3. Analyzing of transformation definition and trace inference according to

TraceStrategy strategy used.

4. Creating Trace objects through the TraceFactory factory.

Figure 12 shows schematically QVTrace components. The process inputs consists

of the source and target model files (in Ecore format), and QVT transformation code,

which are used for trace inference. Obtaining traces is performed by a component

called TraceAnalizer, in collaboration with two fundamental objects in the process:

one of TraceStrategy type, which implements the strategy used for the inference of

the traces, and other TraceFactory kind, which is responsible for creating traces. Thus,

we decouple the creation of the trace, and therefore the knowledge of the metamodel,

from the trace inference process.

Fig. 13. Tuple date structure

4.4 Variable-based analysis implementation

Previously in this section we have presented the inference mechanism used by

QVTrace. This analysis is based on the study of the use of variables within a QVT

program code to infers implicit traces in the definition of the model transformation.

Now we will detail how the variable-based analysis was implemented.

Overview.

The variable-based analysis core is to determine how the variables defined in the

context of a relationship or transformation rule link source model elements with

elements of the target model. As explained earlier, a relationship will determine a

trace, if it meets the following conditions:

1. The existence of an expression to link a source model element with a variable of

the transformation rule, say x , defined in the context of a checkonly domain.

2. The existence of an expression relating a target model element to said variable x in

the context of a domain enforce, belonging to the same transformation rule of the

first point (1).

The expression that relates variables with model elements may take several forms,

which have already explained in the trace cases that have been identified in Section

4.1.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 100

Tuple concept.

The inference trace scheme developed is based on a data structure which was

specially designed, which maintains the relationships between variables and model

elements. This structure was called tuple (Figure 13), and it contains model elements

information (e.g. name attribute, class to which it belongs, model which corresponds

to the class, etc) and the expression which contains the variable that is related.

Therefore it is possible that the expression associated with the model element contains

a constant rather than a variable, as we will see later.

Fig. 14. Tuple utilization example

The trace inference strategy is then to generate the tuples present in the checkonly

domain and enforce domain of every relationship, and later studying variables in

common. If this condition holds, i.e. a variable that is shared by both domains exists,

we will in the presence of a link (trace) from a source model element to a destination

model element.

Figure 14 illustrates the use of tuples for trace inference. In the picture you can see

a fragment of the definition of the rule PackageToSechema, which belongs to a

transformation from an UML model into a relational one, named RDBMS. In this

case, the relationship (1) specifies the conversion of UmlPackage elements (UML

model) into RdbmsSchema elements (RDBMS model). As a result of variable-based

analysis, two tuples are created:

1. Tuple No.1 relates source model element umlName, from UmlPackage class, with

variable pn (2).

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 101

2. Tuple No.2 relates destination model element rdbmsName, from RdbmsSchema

class, with variable pn too (3).

Fig. 15. Trace inference algorithm stages

Finally, the presence of variable pn on both tuples (4) allows to connect the two

model elements, obtaining a trace. In this case, the reasoning is straightforward: if

umlName = pn and rdbmsName = pn then rdbmsName = umlName. This way, we can

be sure that any couple (UmlPackage, RdbmsSchema) satisfying the relation

PackageToSchema verifies that the relational schema name (rdbmsName attribute)

will be equal to the source UML package name (umlName attribute).

Trace inference algorithm.

The trace generation mechanism proposed is based on the analysis of the

relationships variables, comprising a QVT transformation. The inference algorithm of

traces consists of three stages, executed once for each variable of every relation of a

QVT transformation.

• Previous analysis phase, where the tuples associated with the variable analyzed,

present in checkonly and enforce domains of the relationship, are determined.

• Direct trace determination phase, where simple, constant, conditional or query

traces are inferred from tuples generated in the previous step.

• Later analysis phase, where indirect traces of simple type, conditional or multiple

(MultiTrace) are determined, which could not be inferred in the previous step.

Figure 15 shows the various stages of the proposed algorithm, and the results

achieved by each one. Next, we will discuss them in more detail.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 102

Previous analysis phase.

During this stage each domain of the relationship, checkonly and enforce, is

analyzed for veryfing the presence of tuples associated with a given variable of the

relationship. As a result of the phase, it is possible to find tuples in both domains of

the relationship, or tuples in either domain, not both, depending on the use of each

variable.

top relation PackageToSchema {

 pn : String;

 checkonly domain uml p : SimpleUML::UmlPackage {

 umlName = pn (1)

 };

 enforce domain rdbms s : SimpleRDBMS::RdbmsSchema {

 rdbmsName = pn (2)

 };

}

Fig. 16. Direct trace generation

In the former case, the presence of a tuple in the checkonly domain, and the

presence of another in the enforce domain of the relationship, for the same variable,

will result in a direct trace. In contrast, the presence of a tuple in an enforce domain,

without corresponding to an associated tuple in the checkonly domain, or vice versa,

indicating the presence of an indirect trace, can not be defined until the analysis of the

post-conditions of the rule at Where clause, which is performed during the execution

of the post-analysis phase, as we will see later.

Now we will present two relations corresponding to a UML2RDBMS

transformation, to illustrate the above cases that arise during the previous analysis.

Figure 16 shows QVT code belonging to PackageToSchema relationship, which

performs the conversion of UML model entities Package into RDBMS model Schema

entities. As a result of the analysis, we obtain the tuple (umlName::UmlPackage, pn)

from the checkonly domain of the relation (1), and the tuple

(rdbmsName::RdbmsSchema, pn) from the enforce domain (2).

The listing at Figure 17 shows a second example where no analysis results in

obtaining two tuples for the same variable within domains checkonly and enforce.

The source code analyzed here corresponds to the PrimitiveAttributeToColumn

relationship, which specifies the mapping of a primitive attribute type element, from

UML model, into a column of a table of relational model. For this case, the algorithm

must carry out the analysis of the domains for each of the four defined variables. First

iteration of the variable an, results in the tuple (umlName::UmlAttribute, an) from

checkonly domain in (1), but there is not associated tuple in the same variable within

enforce domain. In the second iteration of the analysis, on the variable pn, a similar

situation occurs, yielding the tuple (umlName::UmlPrimitiveType, pn) from

checkonly the domain (2) without a tuple in the enforce domain corresponding to this

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 103

variable. Finally the third and fourth iteration of the previous analysis (on variables cn

and sqltype respectively) allow obtaining tuples (rdbmsName::RdbmsColumn, cn) and

(rdbmsType::RdbmsColumn, sqltype) from the enforce domain (3) (4), without

associated tuples on the checkonly domain of relationship for the same variables.

relation PrimitiveAttributeToColumn {

 an, pn, cn, sqltype : String;

 checkonly domain uml c : SimpleUML::UmlClass {

 umlAttribute = a : SimpleUML::UmlAttribute {

 umlName = an, (1)

 umlType = p : SimpleUML::UmlPrimitiveType {

 umlName = pn (2)

 }

 }

 };

 enforce domain rdbms t : SimpleRDBMS::RdbmsTable {

 rdbmsColumn = cl : SimpleRDBMS::RdbmsColumn {

 rdbmsName = cn, (3)

 rdbmsType = sqltype (4)

 }

 };

 primitive domain prefix : String;

 where {

 cn = if prefix = _ then

 an (5)

 else

 prefix + '_' + an (6)

 endif;

 sqltype = PrimitiveTypeToSqlType(pn); (7)

 }

}

Fig. 17. Indirect traces generation at pre-analysis phase

Table 1 summarizes the results of the execution of the previous analysis phase on

the relationships analyzed. As we see, the first row shows that for the rule

PackageToSchema (indicated as P2S in the table) produces two tuples related to the

variable pn, one in the domain checkonly and one in the domain enforce the

relationship. The rest of the table shows the tuples obtained at

PrimitiveAttributeToColumn rule (indicated in the table as P2C), which shows that

for each variable analyzed only a tuple is found in each domain.

Direct trace determination phase.

The next phase of the algorithm consists in analyzing the tuples generated during

the previous step and generating direct traces. We understand for “direct trace” one

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 104

that can be inferred from the tuples generated during the pre-analysis stage without

any specific treatment or further study.

Relation Variables Tuples (checkonly) Tuples (enforce)

P2S pn (umlName, pn) (rdbmsName, pn)

P2C

an (umlName, an) -

pn (umlName, pn) -

cn - (rdbmsName, cn)

sqltype - (rdbmsType, sqltype)

Table 1. Obtained results during the pre-analysis for each relationship

During this stage are tuples generated in the previous step are analized and it is

checked whether, for a given variable, there is a tuple in both domains of the

relationship, checkonly and enforce, whose expression containing them. Any trace

inferred, in this case, will be a direct trace. The input data of the phase will be the list

of tuples generated during the previous analysis from both domains, while the output

will be direct traces of simple, conditional or constant type, which can be inferred

from the tuples.

Following our previous example, we can see that relationship PackageToSchema

execution of this phase succeeds obtaining the trace as follow:

 umlName::UmlPackage→rdbmsName::RdbmsSchema

inferred from collected tuples in previous phase for variable pn. In contrast, the

execution of the stage for the PrimitiveAttributeToColumn relationship does not leave

any traces result for any of the variables. Indeed, as shown in Table 1, although

during the preliminary phase tuples were obtained from both domains, these ones do

not corresponds to the same variable at domains checkonly and enforce

simultaneously.

Later analysis phase.

The final phase of the algorithm, called post-analysis, receives as input the tuples

generated during the first stage (previous analysis) which could not be derived as

direct traces due to the lack of trace information to establish the corresponding

relationships between variables. Such missing information must be found in the post-

conditions section of the transformation rule, at the Where clause.

The post-analysis stage is about studying the statements within the Where clause,

to determine the traceability relationships between model elements specified by the

variables. Following our example of the PrimitiveAttributeToColumn relation, we see

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 105

that Where clause sentences allow us to finish associate those variables that after the

direct trace determination phase seemed to be isolated. The assignment statement of

variable cn, dependent on the outcome of if-then-else clause (Figure 17), allows us to

establish its relationship with the variable an (5) (6), so we can infer the following

conditional trace:

 uml-

Name::UmlAttribute⊕prefix+‘_’+umlName::UmlAttribute→rdbmsType::RdbmsColu

mn

Next, the assignment statement of variable sqltype allows us to associate with the

variable pn, determining the trace as follow:

PrimitiveTypeToSqlType(umlName::UmlPrimitiveType)→rdbmsType::RdbmsColumn

Constant traces.

The constant trace inference carried out by the presented mechanism is an

exceptional case in the variable-based analysis. Although the detection of such traces

is performed by the same component that implements the traceability strategy, it does

not correspond to an analysis of variables. Indeed, since it is possible to infer a

constant trace, direct or indirect, in an expression without variables, detection does

not require the study of variables. The detection of this kind of traces is performed the

same way to the others. In the case of direct constant traces, which are those that can

be inferred after the pre-analysis, detection happens when it is verified that the

expression of the tuple generated in an enforce domain has assigned a constant value.

We have restricted the possibilities to two types of constants:

• Numeric, of integer values.

• String of characters.

Thus, the presence of an expression model_element = k in an enforce domain,

where k is a numeric or character constant, will result in a trace k→

model_element::Entity, being Entity the class to which attribute model_element

belongs. For indirect constant traces, which are those that are inferred in the post-

analysis phase from sentences in the Where clause of the relationship, the situation is

slightly different: instead of giving to a source model element a constant value in an

enforce domain, this element is assigned a variable which is then defined in the post-

conditions section of the rule, directly or through a conditional statement, as

appropriate.

5 Comparison with other approaches

In order to assess the content of the proposal, we present a comparative study with

related work that were introduced in Section 2.2. First we analyze the proposal of

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 106

loosely coupled traceability for ATL by Jouault et al. [7], and then continue with the

scheme of Grammel et al. [4] of traceability data extraction based on facets.

The purpose of the comparison is to show how each approach has addressed the

problem of obtaining traceability information, and contrast differences and

similarities of the works analyzed with the proposal itself. The comparison is based

on two critical points: first, the proposed traceability metamodel, i.e. the way each

proposal represents the traces, and second, in the mechanism of obtaining traceability

information implemented by each approach.

Fig. 18. Jouault’s traceability metamodel

5.1 Loosely coupled traceability approach

The Jouault's proposal was one of the first works to generate automatic traceability

information in the context of model-driven development. It is a reference work that

shows a real model-driven solution to the problem of getting traceability information

in model transformation. For these reasons, it has been chosen to compare against the

study presented in this paper.

Traceability metamodel.

The work proposes a simple traceability metamodel, composed by a class called

TraceLink, which contains an attribute that stores the name of the rule that generates

the trace, and maintains two collections of AnyModelElement type objects, named

sourceElements and targetElements (Figure 18). Such collections store source and

target elements related by the application of the rule. The class AnyModelElement is

abstract, and obviously depends on metamodel application environment.

Traceability information generation.

This approach suggests obtaining traces by adding extra code to ATL

transformation rules, and also adding a trace output model that allows that traceability

information be captured at the time of transformation execution. This modification

does not alter the logic of the program, but adds additional content to the definition of

the transformation. Moreover the authors present a scheme, also supported by the

same transformation language, that allows extra code to be automatically added to the

defined rules, avoiding doing that manually.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 107

As an example, we present the definition of a simple transformation of a source

model A, with a single character string attribute called name, in a destination model B

, with a unique name attribute as well. Figure 19a shows the original code, which

specify how transformation operates. This code is then modified to support

traceability. Figure 19b shows the new version of the code. Although straightforward,

this example allow us to make the following observations:

• Obtaining traceability information is implemented at the transformation level.

Requires execution to generate the traces.

• Does not affect the logic of the definition, but adds additional information that

blurs the legibility of the original transformation.

• It is absolutely independent of the models involved in the transformation.

• Uses a generic traceability metamodel, adaptable to other possible schemes.

• The automatic rules conditioning process for traceability (called TracerAdder)

support can be done before compilation of the transformation.

1. module Src2Dst;

2. create OUT : Dst from IN : Src;

3. rule A2B {

4. from

5. s : Src!A

6. to

7. t : Dst!B (

8. name <- s.name

9.)

10. }

a. Original code

1. module Src2DstPlusTrace;

2. create OUT : Dst, trace : Trace from IN : Src;

3. rule A2BPlusTrace {

4. from

5. s : Src!A

6. to

7. t : Dst!B (

8. name <- s.name

9.),

10. traceLink : Trace!TraceLink (

11. ruleName <- 'A2BPlusTrace',

12. targetElements <- Sequence {t}

13.)

14. do {

15. traceLink.refSetValue('sourceElements', Sequence {s});

16. }

17. }

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 108

b. Modified code

Fig. 19. Jouault’s traceability information generation

Facet-based traceability data extraction.

The Grammel work proposes a generic traceability framework that allows

augmenting arbitrarily model transformation approaches with a traceability

mechanism. It is a generic proposal designed to support traceability on an arbitrary

number of model transformation approximations. The framework is based on a

generic traceability interface (GTI Traceability Generic Interface) which provides the

connection point for some arbitrary transformation languagesand provides an API to

connect with traceability engine. The framework also defines a domain specific

language called Trace-DSL which essentially determines what type of traceability

information is interchangeable between the generic interface and traceability engines

connectors.

Fig. 20. Trace-DSL language fragment

Traceability metamodel.

The Grammel scheme is very interesting given that it adopts a completely different

approach compare to that most authors. We will discuss a fragment of domain

specific language Trace-DSL developed to support traceability (Figure 20). In this

model, the traces are represented by the TraceLink component, which is considered

an abstraction for the transition from one artifact to another. Every Artifact object is

unambiguosly individualized by a Universal Unique Identifier (UUID), and represents

any traceable product generated in the process of development, as a requirement or

class, or a compound artefact, e.g. a method inside a class. A transition is always

directed, therefore a from-to relation between artifacts is created by a trace link

between source and destination artefacts. Whereas the traceability as tracking of all

changes possibly applied to model elements during a transformation, Grammel et al.

propose to breake down the model transformation chain into its elementary operations

(eos) and to define for each type of eo a certain link type between the corresponding

source and target model elements. According to these considerations, the author

proposes the following types:

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 109

• CreateTraceLink, for a newly created target model elements.

• UpdateTraceLink, for an update (destructive or extension-only) as well as update

in-place transformation.

• DeleteTraceLink, for a delete operation on a model element.

• QueryTraceLink, for a query (read) operation on a model, returning a subset of

model elements.

Furthermore, to assign types to artifacts and traces, the proposal uses the concept

of facet, where the Trace-DSL assigns a set of facets to every artifact and trace link,

simplifying type hierarchy and seeking to provide extensibility to the proposed

metamodel.

Traceability information generation.

As we have seen, the use of connectors allows interaction with eventually any

model transformation language, arbitrarily. In particular, and considering that our

proposal QVTrace has been defined in the context of QVT, we focus on determining

how to work out this mechanism to get traceability information in transformations

written for that language. The QVT connector developed by Grammel is written in a

QVT subset called Operational Mappings. This language allows to define

transformations using an imperative approach or complement transformations written

in QVT Relations language with imperative operations (hybrid approach), when it is

difficult to provide a fully declarative specification of a relationship, as well. Each

relation defines a class that will be instantiated for the trace between model elements

being transformed, and has a unique mapping with an operation that the operational

mapping implements.

Under this scheme the traceability information extraction occurs in two steps: first,

the model transformation is executed allowing the conversion of any instance of in-

ternal traceability metamodel QVT in a Trace-DSL instance by defining an operation-

al mapping between metamodels. The second step is to import the Trace-DSL in-

stance generated in the corresponding repository. This description allows us to ob-

serve the following:

• As with the Jouault's proposal, it operates at transformation level, i.e. requires the

execution of the transformation to generate the traces.

• Allows arbitrary interaction with model transformation languages, although

depends strongly on connector that enables connection to the transformation

engine.

• In the context of QVT, use the Operational Mappings language.

• Defines an interesting traceability metamodel typifying different tracing scenarios

(generation of new items, update, delete and query).

• It is independent of the models involved.

• Do not add any additional information that might alter patterns or logic of

transformation.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 110

5.2 Summary of main differences

After discussing the details of the two selected reference works and analizing the

characteristics of the proposed approach, we will contrast the solutions according to

the criteria defined above.

Traceability metamodel.

As described in previous sections, we have seen three different traceability

metamodels proposals. First, a very generic Jouault's scheme, simple, flexible, whose

emphasis is on maintaining traceability information from the viewpoint of the

relationship between elements of source and target models. Second, we review

Grammel's metamodel with a scenario approach that characterizes different types of

trace links based on the impact on the target model. Finally, our QVTrace's scheme,

closer to Jouault's approach, although more restrictive regarding the participants of

the trace relationship and focused on the meaning of relationship, not just its

members, i.e. the way of a source model element becomes in a the target model one.

While we can continue listing differences, each metamodel has its strengths and

weaknesses, and they arise from the application and context in which they are

defined. Clearly there is no “the” traceability metamodel, but different approaches

that emphasize specific aspects depending on the use and results desired.

Traceability information generation.

If traceability metamodel defines what kind of traceability information obtained,

the second comparison criterion considers the how to get it. As we have seen, the

mechanism of Jouault is purely driven by models, defined with the same

transformation language tools, automated, implemented at the level of transformation

that adds extra information to the definition of this transformation, altering not logic

but the readability of it. In contrast, Grammel's work is based on a DSL (Domain

Specific Language) developed ad hoc, generic, adapted to an arbitrary number of

transformation languages, although dependent on the capabilities and tools that it can

provide for the construction of a fundamental connection component, implemented at

the level of transformation. Finally, the proposal of these authors suggests that from

the knowledge of the definition of a models transformation, and the models involved,

it is possible to identify certain patterns or language constructs that allow to recognize

traces, independently from the transformation process, characterizing not only the

participants of the same, but the meaning or form, and does not alter in any way

models nor transformation logic, automated, implemented outside the possibilities of

model transformation language, but built with a major development environments

used under the model-driven paradigm.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 111

6 Conclusions and future work

Throughout the present paper we have reviewed the highlights of the model-driven

development paradigm (MDD) and addressed the concept of traceability as a

desirable feature in any model transformation. In this context, we have proposed an

analysis technique based on variables that allows to identify certain patterns in a

model transformation definition, written in QVT Relation language, that enable

automatic trace inference. Besides being a theoretical proposal, this idea has been

implemented in a prototype called QVTrace, which is designed as an Eclipse plugin

to interact with other model-driven development tools designed for such framework.

In addition, we have detailed the main features of QVTrace and performed a

comparative analysis with two schemes of similar kind: the proposed loosely coupled

traceability of Jouault, and the generic traceability framework for facet-based

traceability data extraction of Grammel et al. This study allow us to conclude that

there is no ultimate traceability metamodel but it is strongly tied to the

implementation of both trace generation mecanism and the information you want to

keep, i.e, the application context. Unlike the work of other authors, our traceability

inference proposal is completely independent of the transformation of models and

works on the definition of it in the belief that it contains the whole traceability

information implied.

Furthermore we can think about QVTrace as a traceability framework, that allows

to decouple the process of obtaining traceability information from transformation

execution. QVTrace proposes a traceability framework for model transformation

integrated with the development environment most used by the community MDD,

Eclipse. With an architecture madeup of a module reader/scanner of models, a module

reader/analyzer of transformations, and a component that analyzes and processes this

information, named TraceAnalizer, allows the developer to obtain model level traces,

enabling its use as debbugging tool to define transformations, allowing to obtain

information on the target model, prior to the completion of the transformation, and

secondly, that it can be used to verify and ensure consistency between the source and

destination models, in case the latter is modified outside the natural flow the paradigm

suggests.

Finally, it is important to mention as possible future research to determine new

constructions or trace cases to infer traceability information so far unidentified. A

second point of interest would be finding the limits of the possible types of traces that

the technique can generate, and to prove it formally.

References

1. mediniQVT. http://projects.ikv.de/qvt.

2. N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model Tra-

ceability. IBM System Journal, 45(3):515-526, 2006.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 112

3. Frank Budinsky, Stephen A. Brodsky, and Ed Merks. Eclipse Modeling Frame-

work. Pearson Education, 2003.

4. Birgit Grammel and Stefan Kastenholz. A Generic Traceability Framework for

Facet-based Traceability Data Extraction in Model-driven Software Development.

In Proceedings of the 6th ECMFA Traceability Workshop, ECMFA-TW ’10, pag-

es 7-14, Paris, France, 2010.

5. Object Management Group. MOF 2.0 Query/Views/Transformations RFP, OMG

document edition, October 2002.

6. F. Jouault and I. Kurtev. Transforming models with ATL. In Satellite Events at

the MoDELS 2005 Conference, volume 3844 of Lecture Notes in Computer

Science, pages 128-138, Berlin, 2005. Springer Verlag.

7. Frédéric Jouault. Loosely Coupled Traceability for ATL. In Proceedings of the

European Conference on Model Driven Architecture (ECMDA) workshop on tra-

ceability, pages 29-37, Nuremberg, Germany, November 2005.

8. Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Dri-

ven Architecture: Practice and Promise. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2003.

9. OMG. Meta object facility (MOF) 2.0 Query/View/transformation specification

version 1.0. http://www.omg.org/spec/QVT/1.0/PDF/, April 2008.

10. The Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of

Software Engineering Terminology. New York, USA, September 1990.

11. Bert Vanhooff, Stefan Van Baelen, Wouter Joosen, and Yolande Berbers. Tracea-

bility as input for model transformation. In Proceedings of the European Confe-

rence on Model Driven Architecture (ECMDA) workshop on traceability, Haifa,

Israel, June 2007.

O. Martínez Grassi et al., Variable-Based Analysis for Traceability in Models Transformation, EJS 12 (1) 84-113 (2013) 113

