
M2K
An Approach for an Object-oriented Model of C Applications

Ignacio Cassol1 and Gabriela Arévalo2

1Facultad de Ingenierı́a, Universidad Austral, Buenos Aires, Argentina
2DCyT (UNQ), CAETI (UAI), CONICET, Buenos Aires, Argentina

icassol@austral.edu.ar, garevalo@unq.edu.ar

Keywords: Reverse Engineering, Legacy Software, Procedural Language, Object-oriented Paradigm, Reengineering,
Refactoring, Design Recovery.

Abstract: When analyzing legacy code, generating a high-level model of an application helps the developers understand
how the application was structured and how the dependencies relate the different software entities. Based on
useful properties that the object-oriented paradigm (and their supporting analysis tools) provide, such as UML
models, we propose M2K as a methodology (supported by our own tool) that generates a high-level model
from legacy C code and proposes differents refactorings. To understand how procedural-based applications
were implemented is not a new problem in software reengineering, however our contribution is based on
building automatically an object-oriented model and help the experts to define manually different refactorings
that let the developer to improve the application. Besides a methodology and the supporting tool, we provide
a summary of thirteen case studies based on small-scaled real projects implemented in C and we showed how
the results validate our proposal.

1 INTRODUCTION

In the 70’s and 80’s, most systems were written spe-
cially in procedural-based languages, such as Cobol,
C, Fortran, Pascal, and Clipper. Many of these appli-
cations are still working, but they are already legacy
code. Their main problems are that mostly they
were implemented in an ad-hoc way or, even with-
out following an analysis- or design-based methodol-
ogy. Usually, provided documentation is not enough,
and stakeholders and original developers have left
the software development group taking away implicit
design knowledge that is not coded in the applica-
tion itself. Due to all these problems, their struc-
ture and functionality are difficult to deal with during
any maintenance task (van Gurp and Bosch, 2002).
Though the solution for all these problems could be
the replacement or the migration of the complete sys-
tems, this action is difficult because they are working
currently in the companies and they represent their ac-
tual economic capital.

During last decades, object-oriented paradigm has
been useful not only in implementing business appli-
cations, but also to implement analysis and refactor-
ing tools. In this paper we propose a methodology to
map procedural code into a high-level model, specif-

ically a class model. By analyzing the source code,
we identify a list of potential class definitions inferred
from the code. Then, we let an expert to analyze
them in order to identify class candidates and propose
refactorings to improve the final model. The mapping
from source code to class definitions is a automatic
process, however, the further analysis to apply refac-
torings is done by experts manually.

The main reason to use an object-oriented design
model is that by using mainly encapsulation, we limit
the complexity of maintenance, and any proposed
change can be applied in the model and in the code
without affecting other entities.

We validate our methodology on thirteen case
studies, but due to space limitations we present only
one in detail and general information about the other
case studies. The main goal of the proposal is to get
a high-level model of C applications and offer im-
provements (through refactorings) at the design level.
Then, the expert can use this improved model to im-
plement a refactored application or modify the origi-
nal one. Our work does not include this last step.

This article is structured as follows: Section 1 pre-
sented the context and the problem that our approach
solves, Section 2 summarizes briefly the related work
to our approach, Section 3 details the M2K methodol-



ogy to be applied in C applications, Section 4 shows
in detail the application of M2K to one specific case
study, Section 5 analyzes the applications of refactor-
ings in the thirteen case studies, and finally Section 6
concludes our paper.

2 RELATED WORK

The related work will be summarized briefly in two
subjects: source code analysis of C code to obtain a
high-level model and model refactorings. From the
source code analysis viewpoint, works related to iden-
tifying objects starting from C code are (G. Canfora
and M.Munro, 1996), (Yeh et al., 1995) and (Siff and
Reps, 1999) that propose different approaches to find
classes in legacy code by identifying functions, vari-
ables and modules in the code, and to cluster these to-
gether based on different classification criteria. Fanta
et. al. (Fanta and Rajlich, 1999) describe an ap-
proach that allows to restructure C code into a new
C++ classes. Although the migration of the paradigm
is relevant, compared to our approach the proposal
does not count with a model. The closest one to our
proposal is the work of concept formation (Sahraoui
et al., 1997). This method relies on the automatic for-
mation of concepts based on the obtained information
directly from the source code to identify objects. Zou
and Kontogiannis framework (Zou and Kontogiannis,
2001) proposes an iterative and incremental migration
process. Our proposal differs from this one because
M2K is not intended to migrate the code. Garrido
et. al. (Garrido and Johnson, 2003) refactor C pro-
grams with the presence of condicional compilation
directives. The approach is automatic and the refac-
torings offered are focused on the code. Compared
to our approach, this approach does not offer a high-
level model and is not dealing with changing from
a paradigm to another one in a pure way. Another
closest proposal is the use of language-indepent plat-
form Moose (Nierstrasz et al., 2005) to analyze source
code. In this latter approach, using different plug-
ins, they are able to generate a model of the source
code. This model is a representation of the C code in
the FAMIX model, but they do not offer a migration
to another paradigm. Recent works summarized by
Yada et. al. (Yadav et al., 2014) are focused on gen-
erating visualizations of C applications, that could be
considered as high-level models.

From model refactorings viewpoint, mainly UML
models are considered as suitable candidates for
model refactoring (Astels, 2002)(Boger et al., 2003)
(G. Sunyé et al., 2001). Many of the refactorings
know from object-oriented programming (Fowler

et al., 1999) can be ported to UML class diagram as
well.

From our knowledge, and based on the state of the
art, there is no methodology that combines to generate
a high-level model starting from C applications and
propose improvements of the model using refactor-
ings a la Fowler. We consider that the methodology
we design to identify class candidates and the pro-
posed refactorings are the main contributions of this
paper.

3 OUR APPROACH: M2K
METHODOLOGY

The M2K (the acronym of Mapping to Know or
Methodology to Know) methodology analyzes C code
that should fullfil the following preconditions: (1) The
source code should not have syntactical errors, thus it
can be compiled correctly without breaking down the
system from the syntactical viewpoint; (2) the code
should be written in Ansi C. We chose this target lan-
guage because it is the most used programming lan-
guage in industry 1; (3) The system should use Ab-
stract Data Types (ADT) to define the data structures.

3.1 Phases of M2K

M2K has two phases: Source code Analysis (sup-
ported by our tool ModelMapper) and Expert map-
ping. Just to clarify in the rest of the paper, we define
the model entities as the meta-entities that are used to
build a model, such as classes and methods, and do-
main concepts as the concepts that are implemented
in a specific domain, such a customer in a business
application.

The Source Code Analysis is automatic and is
composed of two steps performing a static analysis.

1. Extracting. The tool extracts C model entities (
variables, modules, ADTs and functions) from the
source code by using a customized parser, and

2. Mapping. Using some heuristics, the tool maps
the extracted entities to infer possible classes can-
didates (CCD). Specifically, ADTs are used to
build potential classes, the functions are mapped
as methods, variables as attributes and modules as
classes.

The Expert Mapping phase is non-automatic and
requires an expert that analyzes the group of CCDs
in order to decide the final set of classes represented

1http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html



in the legacy code. The choice of final classes is
based on the user knowledge, the functionalities of
the legacy program and the refactorings proposed to
improve the original model. In this step, concepts re-
lated to object-oriented paradigm appear in the model,
such as associations or inheritance.

3.1.1 Source Code Analysis: Extracting Step

To understand how we analyze the source code, we il-
lustrate the process using a simple C program, that has
three modules that implement three data structures: a
stack, a queue and a list of integers. Following we
show the example code:
#include "list.h"
#include "queue.h"
#define TAM 6
#define MAX TAM -1

typedef struct {
int top;
int item[TAM];

}stack;

/*stack functions*/
int full(stack *);/
int empty(stack *);
void push(stack *, int);
void pop(stack *,int *);

void sortQueues(queue[]);

void main() {. . .}

The header of the list.h module is:
#define TAM3 6
#define MAX3 TAM3 -1

int itemlist[TAM3];
int actual;

void initlist();
void insertafter();
void insertbefore();
void length();
void destroy();
int getitem();
int listfull();
int listempty();
void moveactual(int);

The header of the queue.h module is:
#define TAM2 6
#define MAX2 TAM2 -1

typedef struct {
int front;
int rear;
int length;
int item2[TAM2];
int cant;

}queue;

/*queue functions*/
void enqueue(queue *, int);
void dequeue(queue *,int *);
int isFull(queue *);
int isEmpty(queue *);

In the Extracting step, we parse and analyze the
code in order to generate separate lists containing en-
tities that represent global variables, functions, ADTs
and modules identified in the legacy code. Thus, in
our example the final result will be:

• ADT s = {stack,queue}
• Functions = {main, f ull,empty, push, pop,

enqueue,dequeue, isFull, isEmpty,
initlist, inserta f ter, insertbe f ore, length,
destroy,getitem, list f ull, listempty,
moveactual,sortQueues}

• Variables = {TAM,MAX ,TAM2,MAX2,
TAM3,MAX3}

• Modules = {list,queue}

The ADTs are extracted based on the struct
statement, the functions are extracted based on the
function definitions and modules are extracted based
on the #include sentence in the header of each file
in the application. In the specific case of global vari-
ables, we extracted them from #define in the header,
and variables defined in the header of the file that con-
tains the main() function.

3.1.2 Source Code Analysis: Mapping Step

In the Mapping step, we look for relationships and
dependencies between the lists generated in the Ex-
tracting step and create the CCDs. To perform this
phase, we have defined a set of heuristics. Each one
is defined with a set of conditions to be fullfilled by
model entities, and the steps to create a new CCD, or
modify an existing one based on those entities. We
define heuristics because they serve as checks or in-
dicators by which a structure may be examined for
potential improvements (Yourdon and Constantine,
1979). The heuristics rules may result in non-unique
assignment, e.g., a function with two ADT parame-
ters may be assigned to both resulting CCD. These
conflicts are recognized and resolved manually in the
Expert mapping phase.

ADT-based Heuristic. Based on the fact that each
ADT in C code is defined using struct and that
groups a set of typed variables {a1, . . . ,an}, with this
heuristic we look for cohesive entities by creating a
CCD with the same name as the ADT and the fol-
lowing pair of elements ({a1, . . . ,an},{ f1, . . . , fm}),
where each fi is a function that takes an entity
of the type ADT as arguments or return it. In
our example, the CCD stack is created as stack =
({top, item[TAM]},{ f ull,empty, push, pop}),
and the CCD queue is created as queue =
({ f ront,rear, length, item2[TAM2],cant},{enqueue,
dequeue, isFull, isEmpty})

In the case that the argument is a set of elements
typed with the ADT, we do not keep these functions in
the defined CCD, because those arguments can build



a new one that deals with it. In our example, the func-
tion sortQueues is not included in the previously
defined CCDs, because the parameter is an array of
queues.

Module-based Heuristic. From design viewpoint,
the modules define (and implement) functions that
share a common goal or are related by a common
functionality, in our example the module List defines
several functions to deal with list operations. How-
ever, this design principle is not always fulfilled in all
C applications. To our analysis, we consider that the
modules are implemented in a .c and/or .h files. In
this heuristic, depending on the structure of the mod-
ule, there are three possibilities of encoding it in our
model.

1. If the module contains only a set of functions that
are not related to a CCD previously defined, we
will generate a CCD with those functions mapped
as methods and with attributes, if there are de-
clared variables. If not, the defined CCD will have
only methods.
In our example, this heuristic will
create the CCD list as list =
({itemlist[],actual},{initlist, inserta f ter,
insertbe f ore, length,destroy,getitem, list f ull,
listempty,moveactual})

2. If there are only ADTs, and all the functions are
related to those ADTs, we will get one CCD per
each ADT according to the ADT-based heuristics.
In this case, no new CCD will be created.
In our example, the module queue.h is not build-
ing a new CCD because it was already mapped as
the CCDs queue in the ADT-based heuristic.

3. If there is a mixture of declaration of variables
and ADTs, and/or functions related or not to those
ADTs, we will generate CDDs for each ADT with
their corresponding methods - according to the
ADT-based heuristics -, and another CCD with
the same name as the corresponding module with
the declaration of variables and the corresponding
methods not related to a CCD.
In our example, a new CCD named main is cre-
ated containing the method sortQueues that was
not related to any ADT because its argument is
an array, and is not considered in the ADT-based
heuristic. The rest of the functions are related to
the ADT stack and are defined in the correspond-
ing CCD.

Global Variables-based Heuristic. In this heuris-
tic, we analyze each global variable y and a function

f (x1, . . . ,xn) that reads or writes y in its definition,
and then the CCD that contains f adds y as a new
attribute in its definition. Thus, this heuristic does
not create CCDs. With this heuristic, we identify a
cohesion-based situation that helps us to complement
an existing CCD. In our example, this heuristic
finds three global variables referenced in different
functions: MAX is read in full(stack *p), TAM2
is read in dequeue(queue *c, int x) and MAX2
is read in isFull(queue *c). Then, the CCD
stack adds MAX , and the CCD queue adds TAM2
and MAX2 in their respective list of attributes.
Thus, the result of the modified CCDs are: stack =
({top, item[TAM],MAX},{ f ull,empty, push, pop}),
and queue=({ f ront,rear, length, item2[TAM2],cant,
TAM2,MAX2},{enqueue,dequeue, isFull, isEmpty})

In the case of module list.h, this heuristic finds
that MAX3 is read in listfull(), and TAM3 is read in
insertafter() and insertbefore(). Then, these
attributes are added to the CCD list. The result of this
CCD is: list = ({itemlist[],actual,TAM3,MAX3},
{initlist, inserta f ter, insertbe f ore, length,destroy,
getitem, list f ull, listempty,moveactual})

3.2 Expert Mapping: Refactoring

As we stated previously, the mapping from source
code to class definitions is an automatic process, but
the further analysis to decide the final set of classes is
based on expert knowledge and a set of refactorings
done by experts manually.

As we are obtaining an object-oriented model
with associations built only between variables and the
CCD that type them, and we want to take advantages
of good design principles, we could propose improve-
ments in the obtained design. Thus, we describe dif-
ferent possible refactorings that can be applied. Some
of them are based on the Fowler refactorings (Fowler
et al., 1999) and other ones are built based on specific
problems when analyzing the resulting model. Due to
space limitations, we will just mention some of them,
and the reader can see their application in the case
study explained furtherly in this paper: (1) Extract-
ing common arguments from methods, (2) Extracting
algorithms, (3) Abstracting an algorithm: a variant
of Extracting Algorithms, (4) Relocating attributes or
methods, (5) Renaming CCDs, (6) Removing CCDs.
This list is not exhaustive, and just mention the main
ones applied in the case study furtherly.



4 VALIDATION

The source code of the thirteen case studies that we
use to validate comes from two different sources:

• Ten case studies (University, AssemblyLine, Bal-
lotBoxes, AirportABC, LightBulbs, Elevators,
MixAdt1, MixAdt2, MovieClub, Library) were
designed with UML class diagrams and imple-
mented in C by a group of advanced computer sci-
ence students.

• Three case studies (Calculator, Bank, Airport)
were downloaded from different Internet web-
sites. As we did not have UML class diagram (as
previous cases), they were also built by the same
group of advanced university students that worked
in the first set of case studies.

The classes of the UML diagram are used to perform
the comparison of the original design model with the
one we obtain with our approach. We have chosen
the case studies from different sources, because in the
case of applications implemented by university stu-
dents we consider them as the experts that know the
complete model and can validate our results. Then in
the case of applications downloaded from Internet, we
use them to show the applicability in any case study
(without needing the experts to validate our results).

We have applied the M2K approach on each case
study, without considering the basic modules, such as
stdio.h or conio.h in our analysis. Table 1 shows
an overview of the size of the case studies and the size
of the class-based models before and after applying
the M2K approach. We can observe the numbers of
classes in the original model are less or equal than in
the refactored model. Based on our detailed analysis,
we observe that the original classes are kept in the
refactored model.

Table 1: Number of classes in different analysis phases of
each case study.

Case Study LOC UML Initial Refactored
classes CCDs CCDs

University 162 1 3 7
AssemblyLine 168 3 4 3
Calculator 200 1 1 10
Bank 216 2 2 2
BallotBoxes 228 7 6 9
AirportABC 282 5 7 9
LightBulbs 285 6 4 8
Elevators 295 8 6 10
Airport 341 3 4 4
MovieClub 116 4 4 3
Library 341 6 6 6
MixAdt1 281 2 2 2
MixAdt2 273 2 1 1

Case Study: University. Due to space limitations,
we show only a case study in detail. University is
an application that takes information fron two arrays
in order to obtain a summary of the information of
the students. Figure 1 shows the resulting CCD-based
model in this case. Now, when we analyzed this gen-
erated model, we discovered seven possible refactor-
ings based on the obtained design:

1. Abstracting an Algorithm. The method
BubbleSort(STUDENT FINAL average[],
int array size) (mapped from Bubblesort
function) is implementing the bubblesort algo-
rithm to sort the students using their grades.
The refactoring is to implement a more abstract
sorting algorithm that could be used by any data,
and then use that implementation with the student
data that is used in this application.

2. Extracting Algorithms. There are three
methods mapped from three functions
that are performing different printing ac-
tions print best 10 averages(..),
print average per student(..),
print exams per student(..). We could
extract the common behavior and refactor the
different ones in several new CCDs, as in Strategy
Design Pattern.

3. Extracting Common Arguments from Meth-
ods. According to ModelMapper, we have
built a CCD Student Final with the structure
described previously, and that CCD allows us
to know that the arguments of the methods of
the CCD Student.h have that type. However,
when we have a look at the methods in this
last CCD, we discovered that those arguments
are arrays (STUDENT FINAL finals[] and
STUDENT FINAL averages[]). One example
method is search exams per student(int
code, STUDENT FINAL finals []). This
means that in fact these arguments are common to
most functions, and they could be refactored and
transformed into attributes finals and averages
in the CDD abstracting the set of students final
exams and averages.

4. Relocating Attributes. In the CCD
University.c (mapped from the module that
contains the function main()), we have two con-
stants ELEMENTS and STUDENTS. As they are used
in the CCD Student.h, we relocate them in this
last one, and we map them as class variables.

5. Renaming CCDs. Once we have applied all
previous refactorings, we can rename the CCDs
according to the concept domain they represent.
Thus, the CCD Student Final is named as



Figure 1: Case Study University. Resulting CCD-based model.

Student and the CCD Student.h is named as
Student Set

6. Removing a CCD. Given that when we have re-
located the attributes of the CCD University.c,
now this CCD is empty and can be removed from
the refactored model.

With these refactorings, we obtain an improved CCD-
based model (shown in Figure 2) of our application.

5 ANALYSIS: APPLYING
REFACTORINGS

Once we have built the CCD-based model in the Map-
ping phase, we refactored it to improve its object-
oriented design. In Table 2, the columns Refactorings
shows the number of case studies in which the refac-
toring was applied, and Percentage shows the same
information but in terms of the thirteen case stud-
ies, for example the refactoring named as Extracting
algorithms is applied in 6 case studies, representing
the 46% of them. When analyzing the frequency of
each refactoring, the most applied one is Relocating
attributes or methods. This happens because when
building applications with structured paradigm, the
variables are not associated necessarily to the func-
tions use them. When M2K approach maps this struc-
ture in a object-oriented model, as a consequence the
attributes and the behavior of the built CCDs are not
associated correctly, and then the expert needs to re-
locate the model entities to the right CCD. Another
most used refactoring is Renaming CCDs, and this
happens because the names close to the domain con-
cept can not be inferred from the code, because they
are related to the domain they are representing in both
the legacy code and the high-level model. Both refac-
torings (Relocating attributes or methods and Renam-
ing CCDs) highlight an important goal of the ap-
proach: the experts do not add classes that were not
mapped previously because they are identified in the
automatic process of the approach. The added classes
made in the refactorings Extracting algorithms and

Table 2: Applied Refactoring applied to case studies. #R is
the number of refactorings and % is the percentage in terms
of all case studies.

#R %
Relocating attributes or methods 8 61
Renaming CCDs 7 54
Extracting algorithms 6 46
Extracting common arguments 5 38
Removing CCDs 5 38
Abstracting an algorithm 1 8

Abstracting an algorithm focus on design classes and
are not related to domain concepts of the applications.

The refactoring Extracting algorithms, as the pre-
vious refactoring, depends on the implementation of
the C application. We applied the Strategy pattern to
extract the common behavior in the CDD delegating
behaviour to new classes.

The refactoring Removing CCDs is used to re-
move unneeded classes. After the automatic part of
the approach, the expert receives a set of candidate
classes where some correspond to the real Classes of
the UML and some are discarded. The ones that are
removed either correspond to empty classes or do not
represent domain concepts.

Finally, the refactoring Extracting common argu-
ments is a consecuence of migrating from procedural
to object-oriented paradigm. In this last one, it is not
needed that a method makes an explicit reference to
the attributes that use in its parameters, but in C Code
does it.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we propose the M2K methodology that
generates class definitions from source code in C. The
mapping of the legacy code is an automatic process
and the further analysis to apply refactorings is done
manually by experts. It differs from other existing
works that it uses heuristics to look for cohesive en-
tities and generate a set of class candidates. By us-



Figure 2: Case Study 2: University. Modified CCD-based model.

ing this methodology we can improve the understand-
ing of a legacy code, propose some refactorings and
generate a design document. Our future work in-
cludes to automate some refactoring activities, and to
apply a ranking to improve the filtering of the gen-
erated CCDs. We will work on a new heuristic to
find associations between CCD. In the case of iden-
tifying inheritance, we consider that it would be pos-
sible to propose a improvement in the Expert map-
ping phase. C language does not have statements that
could be mapped as this design principle. A more
complete validation with a legacy code with 20KLOC
will measure the complexity and effort of refactoring
the reconstructed model, and the scalability of the ap-
proach.

REFERENCES

Astels, D. (2002). Refactoring with UML. In Proc. Int’l
Conf. XP and Flexible Processes in Software Engi-
neering, pages 67–70. Alghero, Sardinia, Italy.

Boger, M., Sturm, T., and Fragemann, P. (2003). Refactor-
ing browser for uml. pages 366–377.

Fanta, R. and Rajlich, V. (1999). Restructuring legacy C
code into C++. In Proc. Int’l Conf. Software Mainte-
nance (ICSM), pages 77–85. IEEE Computer Society
Press.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts,
D. (1999). Refactoring: Improving the Design of Ex-
isting Code. Addison Wesley.

G. Canfora, A. and M.Munro (1996). An improved algo-
rithm for identifying objects in code. Software Prac-
tice and Experience, 26(1):25-48.

G. Sunyé, Pollet, D., LeTraon, Y., and J.-M. Jézéquel
(2001). Refactoring UML models. In Proc. UML, vol-
ume 2185 of LNCS, pages 134–138. Springer-Verlag.

Garrido, A. and Johnson, R. E. (2003). Refactoring c
with conditional compilation. In ASE, pages 323–326.
IEEE Computer Society.

Nierstrasz, O., Ducasse, S., and Gı̌rba, T. (2005). The story
of moose: An agile reengineering environment. SIG-
SOFT Softw. Eng. Notes, 30(5):1–10.

Sahraoui, H. A., Melo, W. L., Lounis, H., and Dumont, F.
(1997). Applying concept formation methods to ob-
ject identification in procedural code. In ASE, pages
210–218.

Siff, M. and Reps, T. (1999). Identifying modules via con-
cept analysis. IEEE TSE, 25(6):749–768.

van Gurp, J. and Bosch, J. (2002). Design erosion: Prob-
lems and causes. J. Syst. Softw., 61(2):105–119.

Yadav, R., Patel, R. P., and Kothari, A. (2014). Reverse en-
gineering tool based on unified mapping method (re-
tum): Class diagram visualizations. Journal of Com-
puter and Communications, (12):39–49.

Yeh, A. S., Harris, D. R., and Reubenstein, H. B. (1995).
Recovering abstract data types and object instances
from a conventional procedural language. In Proc. of
WCRE), page 227. IEEE Computer Society.

Yourdon, E. and Constantine, L. L. (1979). Structured De-
sign: Fundamentals of a Discipline of Computer Pro-
gram and Systems Design. Prentice-Hall, Inc.

Zou, Y. and Kontogiannis, K. (2001). A framework for mi-
grating procedural code to object-oriented platforms.
In Proc. of IEEE APSEC, pages 408–418, Los Alami-
tos, CA, USA. IEEE Press.


